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PREFACE

This paper is the only known published work on the nonlinear theory
of stability of prolate spheroids under external pressure. An extensive
search by the translator revealed that the particular issue of the journal
(Kazanskii Filial Akademii Nauk SSSR, Seriya Fiziko- Matematicheskikh i
Tekhnicheskikh Nauk, No. 7, 1955) in which this paper appeared was not
available in this country. A copy of the article as it appeared in the
jourmal was obtained after direct correspondence with the author; and this
translation serves to make this work available on a wide scale.

The translator wishes to acknowledge his indebtedness to Mrs. P.
Hale of Virginia Polytechnic Institute and to Dr. B. Nakonechny of the
David Taylor Model Basin for their valuable assistance in the translation
of this paper.

NOTATION

Et3
D Bending rigidity, ————v
12(1-v2)

E Young's modulus

X Tensile rigidity, Et
1l-v

2

Critical pressure of the shell according to the linear theory

P Pressure at which the stable and unstable states of equi-
librium coincide, i.e., at which the first and second vari-

ations of the energy functional @ are equal to zero

Critical pressure of the shell according to the nonlinear
theory, i.e., the lower limit of all values of the pressure p
for which the energy of the ™nonlinear" state is smaller than
the energy of the ™Mzero'! state

T Additional stresses in the middle surface (after snapping)

T.s T Stresses in the middle surface of the shell for the mem-
01’ 02 . .
brane state (prior to snapping)

t Thickness of shell
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u, v Projections of the displacement of a point of the middle
surface along the lines a and B
Specific work of the externmal load

Projection of .the displacement on the inward normal to the
middle surface

du v v w Ow . . erivati
= = e ¢ o o vatives
ux. > Y -5;1 X =35 Corresponding partial der

of the displacements

X X,> X,, Curvature parameters

a.and B Gaussian coordinates of the middle surface of a shell of
revolution along the meridians and parallels; Rl and R, are
their radii of curvature

Ll
Ry

o

€ Gz Relative elongations in the directions of the coordinate
lines a and 8

v Poisson's ratio

r

r L
/2 Ry

w Angle of displacement between the coordinate lines o and B.

iii



ABSTRACT

The Rayleigh-Ritz method is used to solve the problem of
stability of prolate spheroidal shells under uniform external
pressure. Nonlinear terms are retained in the analysis. The
"equal energy" load and the minimum post-buckling load are
determined for several cases that demonstrate the effect of
varying the eccentricity of the generating ellipse.

INTRODUCTION

This paper deals with -the possibility of the local loss of stability
of a prolate spheroid, under the influence of uniform external normal
pressure distributed over the entire shell. Large displacement theory,
which allows for snap-through buckling, is used.

The present work represents a generalization of the well-known
theory of snapping of shells” for the case of prolate spheroids.

Here the critical pressures P, and P, are determined by the energy
method, as was done for the spherical shell. This means that the pressure
P, corresponds to equal levels of total energy of the shell in the "zero"

and ™nonlinear™ states; the pressure Py corresponds to the case where the
stable and unstable states of equilibrium coincide, at which point the
energy function ® has a parabolic point, i.e., the first and second
variations of @ are equal to'zero.

The problem under discussion is solved in a general form, and in
addition, certain numerical examples are investigated.

1. DETERMINATION OF P,

The solution of the problem is carried out for the assumption that
the center of the snap lies on the eguator of the shell and in a plan view
the region of the snap resembles the form of an ellipse., This assumption
is reasonable, since in the investigation of the local loss of stability of
a geometrically perfect spheroid shell the weakest part is in the region of
the equator. In the regions remote from the equator the curvature of the

shell is greater; consequently, the stiffness of the shell will also be
greater,

lReterences are listed on page 16.



If, in addition to the fundamental "zero" state of equilibrium of
the shell, it is possible that for the same loading there is a stable
position of equilibrium after snapping, then the total energy of the shell
must also be at a minimum in this final state. Thus, the problem is reduced

to a minimization of the functional:

O = ff(_lz(_[(.'o 4+ 0)2 - (82 63)2 - 2v (0,0 4 ¢1) (82° + 't)'l"@';—') "]+ [1.1)
@
+ —:—[nn’-*- xy? 4 Dvpny +2(1 — v) afy] — W‘ dxdy,
where Ride==dx, Rdp == dy,

and

are the strains in the middle surface of the shell before snapping for the
assunmption that prior to the local loss of stability the shell is in a
membrane state; w is the original deflection in the membrane state; [1.1)
is integrated over the entire middle surface of the shell; and the normal
to the shell is considered to be directed inward.

The relative displacements and curvature parameters can be written
in the form: '

h=llk+-!2- w,l—w/R , }y=0y ‘t‘%"’—‘./kl;
WOy, Uy W Wy, ok Wy, Xy Wy, Xy em Wiy, [1.2]

Taking into account the condition for equilibrium of a1 element of
the shell in the direction normal to the middle surface in the presence of
extermal uniform pressure on the shell

Ty . T (1.3]
'T.:“" —R% = —p,
where Tor=x K(8:°+4 vest), Toswm K(s9 + v2:°), (1.4)

we present the work per unit area of the external forces in the form:

Wep(@ o) =— (2 1) @+ w) =
' ' [1.5]
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here we include in the energy functional only the work of the normal
pressure on the shell since, by virtue of the boundary conditions for all
the cases which are considered further, the work of the reaction of the
remaining part of the shell on the boundary of the snap region is equal
to zero,

Considering expressions [1.2] - [1.5], we can reduce the functional
(1.1] to the form:

O ff{?l((l - (Ton-f-7°u)+2vT.|T”]+u,T.,+g,7‘“}wy+
+Lf{7[-.=+-.'+2m-.+lé—;+w,‘!:+“-;—9.n]+ 1.6

+ 5 a0 Bma 4 21 —v) o] | dudy.

At the same time, it is assumed that one can neglect the change' in

*

Rl and R2 in the region of the snap, since the size of the snap region is
small in comparison to the size of the shell,

Obviously, the total energy in the first form of equilibrium (be-
fore snappi.ng) is equal to

f f 2K(l [ (Ta +Tﬂ)+2'7'017'nldxdy,
where the integral is tz\ken over the entlre shell, Then, the problem is

reduced to the minimization of the functional

V-0,
On the assumption that, in the snap region, T01 and T02 are constant, the
expression !—ff(u:Tn-l-v,T.)dxdy,

»
which enters into [1.6], is equal to zero in virtue of the boundary
conditions, since we put

Hem(), om(), W, =0, .’-O for e== ¢ and P—Po.
Thus, we have

= -:_fg[['l' + 8 4 2ve10y + '"%'l o R ! 4 x4

+2ﬂ1!:+2(l—~v);},|+., +. -'}dxdy (1.7)

Here the integration is carried out only over the region of buckling S?,

since the quantities characterizing the snap may be different from zero

* 2 2 . . 2 2,
The terms v and wy were incorrectly printed as 13 and e,; in the

original.



only in the region

0CasCe and 0KH<Ch.

We introduce the new variables

w7y <1<, 1.8]

and the notation

= - -f .
xo"—Rl.O' Yo Rz?n 3 Ry ’ [1.9]

where x, and y o are the linear dimensions of the snap region in the

directions of the meridian and equator of the shell. In the following, we
will assume that the contour of the snap region is determined by the

ellipse I
We choose the displacements in the general form:
4= p hao?RiA(E, M), U=padas’BRV/(E, ), [1.10]
w == a'Rug (¢, ),
where

h(‘: "l)o j(E, ) and g(En 7)

are some functions of §, 7, characterizing the displacements and which

should satisfy the boundary conditions, i.e.,

g€ =1 for tmnm0and g(§ 7)=0 for {4 qm=1,
where P1s pz, and A are unknown parameters. The magnitude of the angles
a, and Bo, which determine the extent of the buckled region, are also
unknown. However, a simple relation exists between these angles,
In fact, according to our assumption, the contour of the buckled
region projected onto a plane tangent to the spheroid at the equator is

the ellipse (see Figure 1)

5.7+.v%-1' (1.12)

The equation of the ellipsoid formed by rotating an ellipse with
semiaxes a and b about the axis olxl has the form

?’14.!_-‘_%&_1, (1.13]
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If the contour of the snap region lies in the n.plane parallel to the
Plane xloyl, and is separated from it by a distance z = a-d, then

z'=a'—2ad -, [1.14]
where the distance d << a,

Substituting [1.14] into [1.13], we obtain the equation of an
ellipse lying in the n.plane:

x? ) 1.
2%’(1-2-‘; + 2.4(1‘—5‘-‘;) -

Figure 1



Comparing this equation with [1.12], we find:
“’:yo'- : 0= Ry : Rym=].
On the other hand

Xo == Ri8s, Yo=RiPe, vhere & and By are
small angles. Therefore

Ridee* : Rfed = 3, a3 : Bt om ]:8, (1.15]

Thus, in place of the quantities a  and Bo, we may introduce a single
unknown parameter, namely

f-.*. [1016]
We take into account that
Ty == Tu(2——:')n [1.17]
and introduce the new symbols
tow—To:K=|on|(l —V): E, [1.18]

A;—:T[Au +SL5—-—')3A_1:]. Az == Ay +-L:Au.

M=—1E34,, A.-l"'N'“’ffyﬁe’Mm
A;-—:-ff|2vhej‘+(l—-v)hqjildidq, A.-_—TlAa:.
Bi=2(Bii + B+ (1 — 3By, By =2(Bu+ 7 Bn+ 150 Ba),
a,s——fj[a+ve)V—gez+(c+v)al/1 eg: | dian,
D= [ [ gt + 2ogd + 2 Vngir |,

' ifif["ﬁ VeSS T ”]
t1
—((TL 1 K a
C‘of .f (3 7 Gen+ 80"+ 7 @0, + £ +
+ Ve %+ 80 (28, +£) + 81— Wi g, | dta,

%flj[?t IVE si+ '?:’:]w‘d"'

v




Av= [ lfl]/§ Rdidn, A= fl [l' ]/5 hedtdn,
00 .00
Ay = J';f'-,l—_;.ghadEdq. By = fo Jlﬁ h.gdtdv,

11 : 11 o
Biy = of .:f Vuh gididn, By = aj 6[' Vi h,g. g didn, [1.19]

where A21’ A22’ A32, 821’ 822, 323 are obtained respectively from
All’ A12’ A31, Bll’ 812, 813 by replacing h by j and € by M.
Using the symbols just introduced, after lengthy but in reality

simple calculations, we can represent the functional [1.7] in the following

form: b -%’;—,-rmlmm+mw+n Avt Actpips AcbpaAc+
, .

, (1.20]
+)p, By + 2p2 Ba 44 By + MDy] + At C— &, MPA,

Here A, 91, 92, and r are unknown parameters characterizing the snap region
and e . To minimize the functional [1.20] by the Ritz-Timoshenko method -
for the determination of Py’ which is the lowest limit of all values of p
for which the energy of the "nonlinear' state is less than the energy of
the "zero" state, it is necessary to fulfill the following conditions:

P* =m0, D=0, 9, =0, O, =0, &m0, (1.21]
Hence, we obtain equations for the determination of o), Py A, r, and
€om’ 201 A1+ pr As+ 2By 4 A =0,
prAs42pAr 4 ABy 4 As =0, [1.22]
p1 Bi 4 pa Bs+ 22 D, 4 By =0,
P[Ac—p? A1+ ps? As — p1h By - py Ay — M Dy mm C? (1.23]
e...:%_e, [1.24]

where
RO LI d
vi2 R:— vi2 s’

As is evident for the numerical solution of a particular problem, it is
necessary to determine the values of the functionals Al’ A2, coe Bl, ces
and A. The lattér (according to [1.19]) depend only on the form of the
functions for the displacements h, j, and g. Proper selection of the

7



displacement functions satisfying the boundary conditions [1.11] obviously
guarantees a more dependable solution to the problem.

From our investigation of six alternate forms for the displace-
ments, we retained the one that, in the final analysis, gave the minimmum
value for the pressure Pn at the values § =1, 2, 3, 4:

A, n) =€ N[ —kE+ ) — k(4 2],
J 6, )= e CV[L— &y (§ 4+ 0)— ke (7)),
2@, )=Vl — b+ 7). [1.25)
Here k, kl’ k2, k3, k4, and n are quantities to be determined, where we
will assume that n will be chosen a number such that on the boundary of the
buckled region (¢ + M =1), the deflection becomes negligible.
Further, using formulas [1.19], we compute the coefficients Al’
Ays oo Bl, sesy and A of the energy functional [1.20), In addition, in
formulas [1.19), the limits of integration are taken from O to «~ since, for
the assumed form of the displacements [1.25), the displacements and stresses
are negligible on the boundary of the snap region (¢ + M =1).
Omitting the detailed calculations, we can write the coefficients
of the energy functional in their final form:

6 = A, B l7 05
1 L al 28
A|'=—‘-:—(l-—-—:-+-n—; ‘ n. 5—+—£

64 n)/)
An---L-(2._.2£.+____ : ::+9_t.£,
4+ 4+ ) =
A LHEED. 2 (222 4 ),
LIV ) [ ] [ Ak, 3 & 3 A, N kb 2 kk,
e R e R I L - o)
& Aky S5 & 1 2 k
B"-Q(A—T_'F—?n"‘-n% ey
B.nafg[9—9%+9%'—3%+3%_2%_
—5(zk ey b))
3 425 M
18. “<9+6£l.+3.!l. 2£+2 -3+ nt 2 nt )'
= (x+2-l+l') »N _g,g_
By (2 3 9)



Dy e o (38 + 204 3)(324 32204 48 20 - 8 4 5 0),

Cm @+ 28+3) (142420,

;
Amg 5 (242, [1.26] I

The coefficients Ay, Ayy» A32’ B,y s ?22, and 823
‘12’ Asl’ Bll’ 812, and 813 by replacing k and k3 respectively by k1 and

k4.

are obtained from All’

These coefficients are functions of § and of the unknown parameters
k 'kl k2 k3 ‘k4
—y——y 2, -2, and —— , The latter in our case are determined by means of
nn n n? n2
successive selection and, for § =1, proved to be equal to

& A . - —
- = =0.150; ‘:"""'0'545’:% o =—0.055. (1.27]

To simplify the computations we also used [1.27] for ¢ ¢ 1. The
numerical determination of P, was carried out in the following manner:
(a) For a given 6 (6 =1, 2, 3, 4) and the values of the parameters

k

;+ —;: eee from [1.27], the coefficients of the energy functional 41"2’ cee

Bis eee 5 Aare calculated according to [1.19] and [1.26].

(b) The values P12 Py and )\ are determined from Equations [1.22].
In this case, f and Py are not dependent on the order of the decay n in the
displacement functions; however, A does depend on n.

(¢) The obtained values of Py? Py and A are substituted in Equation
[1.23], and we calculate the parameter r = a_ B, which depends on n and_%_.
Knowing r and taking into account [1.,15], we determine without difficulty 2 !
the values of the small solid angles of the buckle 1

c.-‘/.':_—;, b= ViV [1.28]

(d) For a known r, we compute e, n according to formula (1.24].

Then 0’51, 0”02, and P, are determined. Considering [1.3], [1.17], and
(1.18] and assuming r = r*r (where r#* is a numerical coefficient), we write

these in the general form



m 1 c £ t

WETTETA—D) A 1—v Ry [1.29]
m 1 C E _L
MW rA - R,

PR c £ » {1.30]
mT YI@A—1) A 1= R A

- (e) The maximum deflection in the center of the buckled region is
determined from {1.10] and [1.25] for § =M = 0:

W= Aa 2 R .

Since “"-Vrfmdr="n}’—1%7’ A=p_l_'
1

n
(where r* and A* are numerical coefficients), we obtain
Taa M2 [1.31]
t Yia

Thus the maximum relative displacement in the center of the buckled region
does not depend on the relative thickness of the shell t:/R2 but on the

order of the decay n.

In Table 1 the values of the critical pressure pm and the dimerisions

of the buckled region for different values of § are given for

2 b 0150, = 0,545, 8 = 2 = 0,055 and v = 0.3.
n n n n n

Table 1 shows that the solid angles of the buckled region ao and Bo
depend on n aand .t . Supposing that r __1 and assuming that for n=5 (or
R2 R2 900
also for n=4) the buckle is very small on the boundary of the snap region,
we calculate the values of the small angles o and Bo; see Table 2.
2. DETERMINATION OF Py

For the pressure equal to P we have a parabolic point for ®3%* on
the energy-deflection graph, i.e., the first and second variations of @3
[1.20] are equal to zero.

10




TABLE 1

R ‘
6 =— 1 2 3 4
R
2
Py | 1.2225 | 1.2243 | 1.2257 | 1.2267
b, |1.2225 | 1.2216 | 1.2207 | 1.2208
an 4.2619 | 4.2581 | 4.2563 | 4.2558
r.=— 59933 | 7.7872 [10.086 |11.640
X
o 1 vz /3 2
Y, .
a
BL 1 /2 /3 1
o 2 3 2
%R2  [1.3183 | 1.20m | 1.2060 | 1.2610
n
B, [R; 1.3153 | 1.7830 | 2.2457 | 2,5220
em X2 [0.2205 | 0.2135 | 0.1878 | 0.1816
. ,
om R, |0.2423 | 0.1564 | 0.1238 | 0.1140
o1'-2
Bt
|9021R2 |0.2423 | 0.2346 | 0.2064 | 0.1996
Et
P nzz 0.4446 | 0.3128 | 0.2476 | 0.2280
Ec?
“max [ 7.37 | 7.25 | 715 | 7.14
t
TABLE 2
5 1 2 3 4
o | no=asc02r | 4esr | 4o571 | 4%4sy
1 n=>5/5%40"| 6°51* | 8°35' | 9°55¢
g | mo=4|5702" | 59330 | 530" | se23!
| n=5|5%0"| 7°55* [ 9°36' | 11°04"

11
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Therefore, Py is determined from the equations
O =0, ®, =0, D), =0, O =0,
o5 o), @O, O]

¢:|‘ Q:m O:I'I w:n’ -0
o, O, O, O {2.1]
o5 o5, O, O,

where @), @, .., ®;, @}, .., @, are the corresponding partial derivatives

with respect to the parameters )\, pl, p-z, and r. After certain trans-

formations in the first four equations [2.1], we obtain:

2p1A1 4+ p2As+ 2B+ Ay 0
P|A|+2hAg+lB.+A.-0 [2-2]
PnBl +P.Bt +2X D, +B.+% (l',’_c__’_a&’i"o
A [piAs+ p2As + 014s + A+ piprAs + A = MDy| = 2IC, [2.3]

The calculation of the fourth order deteminaht in [2.1] does not present

particular difficulty since 0: r and 0: o are equal to zero. Calculation

1 2
of the fourth order determinant in [2.1] gives us:
((2°C — ewrA)? + (202C — eqarA) (VC — earA)) (At — 4A1Ay) —

. 2.4
— PA(3C ~ eurA) [B181As — A1B; — A8} — Dy (A} —— 4A1A,)| = 0. [2.4]

Equations (2.2], [2.3], and [2.4] are completely sufficient for determining
the five unknowns A, Py Py r, and LR For the solution of the problem

we will make certain transformations.
In the third equation of [2.2] we introduce the notation

@IC-—ewrd) _ [2.5]

2
3 4}

12



Then ¢,, Pys and A are determined from Equations [2.2] and are linear
functions of ¢. Further, for lnown Ps Pys and A, from Equation [2.3] we

determine _;(_1, which will be a quadratic function of ¢. Using the notation
r

[2.5), we transform Equation [2.4]:
, 1 oC
i
4 [226 L ](B,B,A.--A.Bz—l.al—'01(42-44.4.)1,’ =0, [2.6]
s 3 Al —4A.A,

2 .
After we substitute the values A and ‘_"__g,obta.ined for the particular values
r

of 6 =1, 2, 3, 4,Equation [2.6] becomes a cubic equation involving €. A
cubic equation is solvable by well-known methods, and all three of its
roots can be determined. Computations showed that for a given 6, only the
smallest root of Equation [2.6] was applicable to the determination of P

For known ¢, we easily calculate Kk from Equation [2.5]. Knowing
ek e obtain P from formulas [1.18], [1.17], and [1.3]. We have
calculated the value of p, for spheroids with different elongations, i.e.,
for the particular cases 6 =1, 2, 3, 4. The results of the computations
are given in Table 3.

Here we do not show the computations for the values e, f4, |0, |05:]
and _;_"", which are easily determined for the known quantities of p,, Pys
As Iy and e ok* Further, we compare the values of the critical pressures P, and
which we derived for different &, with results provided by the linear theory

Pks
pR>2

by constructing the graph of the dependence of the value

on &; se
Et2 P Ree
Figure 2. The formula for the determination of the value of the critical

external pressure on the shell according to linear theory for 6§ » 1 is
easily obtained from Reference 2., It has the form ’

- I 1. _f {2.7]
e YIT—W (8-1) R}

P

13
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Figure 2

The graph shows that, for the chosen form of displacements, the
solution of the problem of local loss of stability of prolate spheroids

. R
under external uniform pressure on the shell for 6 =_1> 3 cannot be con-

2
sidered as satisfactory since, beginning with & > 3, the magnitude of the

critical pressure for which the shell loses its stability, as found from
the nonlinear theory, Py becomes greater than the value of the upper limit
of the critical pressure p, as obtained from formula (2.71.

This discrepancy between Py and P, is explained primarily by the
fact that in the choice of the displacement functions we limited ourselves,

because of the complexity of the problem, to satisfying only’ the geometric
boundary conditions.
Also, the solution of the problem is influenced by the proper
k kZ k3 k4 . .
determination of the unknown parameters -n-: r-l--s 1-1-’ ;—2-» n—zﬂ -which in our case

15



were determined by successive selection only for the case of a sphere and
were used for the other particular cases (6 = 2, '3, 4). Finally, we found
that the restriction we imposed on the region of buckling, assuming it to
be elliptical, apparently had an effect on the solution.

It is necessary to point out that, in the particular case when
6§ =1, we obtain a fully satisfactory solution to the problem of the local
loss of stability of a spherical shell. We refrain from investigating
this case, which was satisfactorily discussed at length in Reference 1.

Submitted to the editorial staff Physico-Technical Institute of
; Kazan Affiliate of the USSR Academy
December 20, 1954 of Science
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